

JAM 2021

IBM Cloud Pak for Business Automation

Demos and Labs 2022

Interfacing FileNet Content Platform Engine with

GraphQL on Cloud Pak for Business Automation

V 1.2

Matthias Jung, Ph.D.

matthias.jung@de.ibm.com

mailto:matthias.jung@de.ibm.com?subject=SWAT%20JAM%20CONTENT%20Lab%20on%20GraphQL
mailto:matthias.jung@de.ibm.com?subject=SWAT%20JAM%20CONTENT%20Lab%20on%20GraphQL

CP4BA Demos and Labs 2021 Page 2 of 21

NOTICES

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM

representative for information on the products and services currently available in your area. Any reference to an IBM product, program,

or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent

product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's

responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this

document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119

Armonk, NY 10504-1785

United States of America

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local

law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties

in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein;

these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s)

and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an

endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those

websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other

publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any

other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible,

the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to

the names and addresses used by an actual business enterprise is entirely coincidental.

TRADEMARKS

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many

jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM

trademarks is available on the web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems

Incorporated in the United States, and/or other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used

under license therefrom.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and

Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

IT Infrastructure Library is a Registered Trade Mark of AXELOS Limited.

ITIL is a Registered Trade Mark of AXELOS Limited.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other

countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries,

or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

© Copyright International Business Machines Corporation 2021.

This document may not be reproduced in whole or in part without the prior written permission of IBM.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

CP4BA Demos and Labs 2021 Page 3 of 21

Table of Contents

1 Introduction.. 4
1.1 GraphQL .. 4
1.2 Lab Overview .. 4
1.3 Lab Setup Instructions ... 4

2 Exercise: GraphQL Queries .. 7
2.1 Introduction .. 7
2.2 Exercise Instructions .. 7

2.2.1 Domain Queries ... 7
2.2.2 Folder Queries ... 9
2.2.3 Other Queries ... 13

3 Mutations ... 15
3.1 Introduction .. 15
3.2 Exercise Instructions .. 15

4 Parameters ... 18
4.1 Introduction .. 18
4.2 Exercise Instructions .. 18

Appendix A. Solutions to the Questions ... 21

CP4BA Demos and Labs 2021 Page 4 of 21

1 Introduction

1.1 GraphQL
GraphQL is a specification for a Query Language, which you can read more about it on https://graphql.org/. It

was designed to overcome problems with RESTful interfaces. Similar to RESTful interfaces it also uses HTTP.

A key advantage of GraphQL is its flexibility to define what information should be contained in the response

to a request. Thus, what would be several different requests in traditional interfaces for FileNet Content

Platform Engine, can be combined into one to achieve higher efficiency.

Another advantage is, that applications interfacing to GraphQL only require to send and receive HTTP

messages and can be written without binding with any specific FileNet Content Platform Engine Client

libraries. This results in less version dependencies, and easier upgrades of the environment.

For further reading, the FileNet P8 Platform Documentation contains some sections about developing with

the GraphQL API for Content Platform Engine:

https://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.graphql.dev.doc/gql_overvie

w.htm.

Furthermore, there is also a white paper on the GraphQL interface, with lots of examples:

https://www.ibm.com/support/pages/sites/default/files/inline-

files/$FILE/IBM%20Content%20Services%20GraphQL%20API%20Developer%20Guide_1.pdf.

1.2 Lab Overview
The exercise “GraphQL Queries” introduces you to the GraphQL query language in a series of short, easy to

understand examples. For this, it uses the Graph iQL component, which supports auto-completion and

content sensitive help. The target is not to cover the complete GraphQL query language, but to summarize

the required concepts to use the GraphQL FileNet Interface efficiently.

The examples of the first exercise can be performed independently of the lab "Setting up FileNet Content

Platform Engine for Automation Projects on Cloud Pak for Business Automation". The following exercises

though access documents and folders created on that lab.

The exercise “Mutations” introduces the reader to performing changes on the FileNet Content Platform

Engine environment through GraphQL. In the examples, a folder will be created, its security settings will be

modified, and the folder will also be deleted again.

The last exercise “Parameters” introduces the possibility to parameterize GraphQL queries, freeing a

custom application using the GraphQL interface from making a lot of string manipulations to build up the

final queries with the custom information needed in parameters. This way, the GraphQL queries themselves

can be assembled in a kind of library, defined in constant strings.

1.3 Lab Setup Instructions

_1. If you are performing this lab as a part of an IBM event, access the document that lists the available

systems and URLs along with login instructions. For this lab, you will need to access Graph IQL.

_2. Paste the Content Services GraphQL URL to your web browser.

https://graphql.org/
https://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.graphql.dev.doc/gql_overview.htm
https://www.ibm.com/support/knowledgecenter/SSNW2F_5.5.0/com.ibm.p8.graphql.dev.doc/gql_overview.htm
https://www.ibm.com/support/pages/sites/default/files/inline-files/$FILE/IBM%20Content%20Services%20GraphQL%20API%20Developer%20Guide_1.pdf
https://www.ibm.com/support/pages/sites/default/files/inline-files/$FILE/IBM%20Content%20Services%20GraphQL%20API%20Developer%20Guide_1.pdf

CP4BA Demos and Labs 2021 Page 5 of 21

_3. Select Enterprise LDAP login option

_4. Enter the supplied to you Username and Password and then click Log in

CP4BA Demos and Labs 2021 Page 6 of 21

_5. The Graph iQL Webpage should come up, with which you can explore and develop GraphQL queries and

mutations.

CP4BA Demos and Labs 2021 Page 7 of 21

2 Exercise: GraphQL Queries

2.1 Introduction
The most important request types for GraphQL are “query” and “mutation”. The query obtains data from

FileNet Content Engine, and the mutation will change something, e.g. add a new document to the FileNet

Content Engine. Query is the default request type, so the keyword “query” can be left out. A sample query

can look as follows:

For developing GraphQL requests, the GraphQL component of Cloud Pak for Business Automation allows to

enable the GraphiQL web application. It is used in the next exercises of this lab for exploring the FileNet

Content Platform Engine GraphQL implementation.

For security reasons, a production environment would normally not contain the GraphiQL web-

application, and that application is by default disabled. For accessing GraphQL there, GraphQL requests

can be sent as HTTP requests, the response is sent in JSON format.

When you are working with the GraphiQL interface for some time, it might be that at some moment the

session times out. When this is happening, instead of a query result (or an error) you will get a red error

message. To renew the session, it is enough to refresh the browser page.

2.2 Exercise Instructions

2.2.1 Domain Queries

The queries of this section can be executed even if the Lab 1 - Content part was not done or not completed.

_1. Open a browser and navigate to GraphiQL, the Development Platform for GraphQL queries. Login using

the username and the password which you obtained before.

_2. The left side is for developing a GraphQL request. The editor supports auto-completion using Ctrl +

Space. The request can be run by clicking the triangle right from above the editor, or by pressing Ctrl + Enter.

Through the “Docs” link in the upper right corner, you can browse through the documentation.

CP4BA Demos and Labs 2021 Page 8 of 21

_3. Try entering and executing a first sample request to the query editor:
query domainquery {

 domain {

 id name

 }

}

As there is only one domain on a FileNet Content Manager environment, the section in parentheses (…) does

not need to be specified. The following output should be shown (the IDs, time stamps and user names might

be different in this and all further screenshots showing results, actually)

_4. Try searching for the “Domain” type in the online documentation, by placing the mouse over the query

keyword “domain” and waiting a couple seconds. The box which opens, informs that the domain

directive is of type "Domain", all the types shown in yellow color. Click on the yellow “Domain” to list the

Domain type and its properties. It should tell you, that following properties can be used in the stanza for

the “domain” query:

CP4BA Demos and Labs 2021 Page 9 of 21

_5. Try adding fields to the stanza of your query. Add the “properties” field. When you execute the query,

notice that Graph iQL has automatically extended your query such as follows:
query domainquery {

 domain {

 id name

 properties {

 id

 }

 }

}

The output of this request will show up the ids of all the properties supported by GraphQL below the Domain.

_6. But you might not be interested in obtaining all properties. To narrow down to retrieve specific

properties, it is possible to specify which properties are needed. Try editing the request in this way:
query domainquery {

 domain {

 id name

 properties(includes: ["SystemUserName"]) {

 id value

 }

 }

}

When running this query, the output should show up as follows:

_7. Finally, this request might be extended to include data about the Object Stores of the domain too. Extend

the query as follows:
query domainquery {

 domain {

 id name

 properties(includes: ["SystemUserName"]) {

 id value

 }

 objectStores {

 objectStores {

 id symbolicName

 }

 }

 }

}

This should show information about all the object stores defined in the Content Platform Engine

environment.

_8. How would a request look like which would print the name and value of the "DomainType" property as

well?

2.2.2 Folder Queries

The queries in this, and the following subsection, depend on having completed the Setting up FileNet

Content Manager for Automation Projects on Cloud Pak for Business Automation lab.

_1. If the browser window with Graph iQL had been closed or if you are (re-)starting here, open a browser

and navigate to Graph IQL, the development platform for GraphQL queries. Login using the username and

the password which you obtained.

CP4BA Demos and Labs 2021 Page 10 of 21

_2. Querying for other data, for example folders or documents, it is required to change “domain” in the query

to a different identifier, for example “folder”. A query for folder requires the section between

parentheses “(“ … “)” for specifying exactly which folder to operate on. It is suggested to leave them out

at first and review the error messages.
query folderquery {

 folder

 {

 name

 id

 }

}

Above query will result in an empty data field, and the following two error messages, inside a JSON

structure:

a) Validation error of type MissingFieldArgument: Missing field argument identifier @ 'folder'

b) Validation error of type MissingFieldArgument: Missing field argument repositoryIdentifier @

'folder'

The “repositoryIdentifier” needs to be set to the symbolic name of the Object Store, in this case “CLOS”

without a space and “identifier” needs to be set to the document ID or the absolute folder path of the

specific folder to query, inside the object store. The root folder would be "/".

_3. Try adding the required parameters.
query folderquery {

 folder (

 repositoryIdentifier:"CLOS"

 identifier:"/"

)

 {

 name

 id

 }

}

_4. Adding the list of subfolders is a bit more complex, as the "subfolders" field is of type FolderSet.

FolderSet objects have a single field, which is named "folders" and expands to all folders contained in

the FolderSet. For each of these folders, you can query the id and the pathName for example. The

pathName lists the complete path as would be suitable for the content of the identifier in a following call.
query folderquery {

 folder (

 repositoryIdentifier:"CLOS"

 identifier:"/"

)

 {

 name id

 subFolders {

 folders {

 id pathName

 }

 }

 }

}

CP4BA Demos and Labs 2021 Page 11 of 21

The result of course only shows those folders, to which the logged on user has at least view-access. So we

get something like this:

_5. Listing the contained documents works very similar. The field in the folder to add is the

"containedDocuments" field, which is of type DocumentSet. Its "documents" field expands to the array

of documents contained in the folder. In the query below, you need to use the identifier according to

your username (copy the result from the query above).
query folderquery {

 folder (

 repositoryIdentifier:"CLOS"

 identifier:"/usrxxx Client Onboarding"

)

 {

 name id

 containedDocuments {

 documents {

 id name creator dateCreated

 majorVersionNumber minorVersionNumber

 mimeType

 contentElements {

 contentType

 elementSequenceNumber

 ... on ContentTransfer {

 contentSize

 retrievalName

 downloadUrl

 }

 }

 }

 }

 }

}

CP4BA Demos and Labs 2021 Page 12 of 21

For understanding the magic behind this query, you need to refer to the online documentation. The

contentElements field is of type ContentElements, which implements the interface "ContentTransferType",

which in turn implements the type "ContentTransfer". So by using the "..." notation it is possible to access

fields of one of the other implemented types. The following is returned:

_6. For constructing the download URL, open a text editor (e.g. notepad if you are working on a Windows

machine) and copy the GraphQL URL address into it. Search for the first question mark and remove the

question mark and everything following it from the URL in the text editor. Then copy one of the

downloadUrl values, and append it to the addresss in the text editor, giving the completed download

URL. Copy & paste that URL into a new tab of your browser.

_7. If you did that correctly, you should get the document offered for download, e.g.

CP4BA Demos and Labs 2021 Page 13 of 21

Note that you did not need to login again. The authentication done earlier will be reused on the new

browser tab. Optionally, you can try the same but with using a private browser window, then you would

need to login again.

2.2.3 Other Queries

_1. The singular form of "folder" will search for information on a specific folder. The plural form "folders"

allows to conduct a query for folders in an Object Store. In the below simple form of the query, just a

different folder class name is given for the search, but a where clause can also be added.
query foldersquery {

 folders (

 repositoryIdentifier:"CLOS"

 from: "SWAT_JAM_Case_Folder"

)

 {

 folders {

 id pathName

 }

 }

}

_2. With the query on “documents” you can search for documents. Using this kind of query, you can also

perform more complex searches, like for example queries using CBR clauses. This specific query will list

the folders where the documents are filed, along with the document ids.
query documentsquery {

 documents (

 repositoryIdentifier:"CLOS"

 from: "Document d INNER JOIN ContentSearch c ON d.This = c.QueriedObject"

 where: "CONTAINS(d.*, 'CBR and CSS')"

)

 {

 documents {

 id foldersFiledIn {

 folders {

 pathName

 }

 }

 }

 }

}

_3. You can actually also combine multiple queries into a single GraphQL request, to further reduce the

number of roundtrips of your application to the Content Engine Server, e.g. to increase the overall

performance, especially on slow networks, or with a high latency. This below query gets information from

the domain, and also on the id of the root folder of the “CLOS” repository
query multiquery {

 domain {

 name

 objectStores {

 objectStores {

 displayName

 }

 }

 }

 folder (

 repositoryIdentifier: "CLOS"

 identifier: "/"

) {

 id

 }

}

_4. Observe that in the output JSON data, the query keyword is used to store the result data.

CP4BA Demos and Labs 2021 Page 14 of 21

_5. Try to use same query keyword twice and observe that an error is logged. The error occurs, since “folder”

cannot appear twice in the JSON output under the “data” entry.
query multiquery2 {

 folder (

 repositoryIdentifier: "CLOS"

 identifier: "/"

) {

 id

 }

 folder (

 repositoryIdentifier: "CLOS"

 identifier: "/Case Folders"

) {

 id

 }

}

_6. To fix it, make use of alias clauses, as follows, also to make the result a lot more self-explanatory.
query multiquery {

 rootfolder: folder (

 repositoryIdentifier: "CLOS"

 identifier: "/"

) {

 id

 }

 casefolders: folder (

 repositoryIdentifier: "CLOS"

 identifier: "/Case Folders"

) {

 id

 }

}

CP4BA Demos and Labs 2021 Page 15 of 21

3 Mutations

3.1 Introduction
Mutations are very similar to queries. They are using the keyword "mutation" at the beginning and are

otherwise using the same syntax like a query.

In the mutation, the first section between "(" and ")" after the operation name "e.g. “createFolder" does

not only contain information to identify where to apply the operation, but also contains values for any new

object to create, or values for any changed information, e.g. the new folder name.

The part between "{" and "}" has the same purpose as before, it specifies exactly what information should

be provided on the result of the request.

3.2 Exercise Instructions

_1. In order to change information, create, change or delete folders and documents with GraphQL mutations

need to be used. The below mutation will create a folder below the usrxxx Client Documents folder, as an

example (twice replace usrxxx with your username). Notice how the properties of the new folder are given in

the parenthesis part after the createFolder operation identifier for the mutation.

The result shows how to query additionally the permissions of an object, in this case of the created folder.

Again, the permission objects implement an interface, in this case the AccessPermissionType, and the code

uses the ... notation to "cast" the permission type.
mutation createfolder {

 createFolder (

 repositoryIdentifier: "CLOS"

 classIdentifier: "Folder"

 folderProperties: {

 parent: {

 identifier: "/usrxxx Client Onboarding"

 }

 name: "usrxxx GraphQL Folder"

 })

 {

 id pathName

 permissions {

 permissionSource

 inheritableDepth

 ... on AccessPermissionType {

 granteeName

 granteeType

 accessMask

 }

 }

 }

}

CP4BA Demos and Labs 2021 Page 16 of 21

The security shows four entries on the permissions list. They are depicted below. You can quickly login to

ACCE and verify that the same information is shown there:

_2. The permissions can also be updated, by replacing the whole set of permissions with a new set. The

below update copies the permissions from the result above, just leaving out the access entry for the

group "cp4bausers". This way, the folder is again only visible for your user account. Remember to update

your username below on three places, otherwise your folder might not be accessible for you anymore

after running the mutation.

The update again displays the new security, so that you can verify success of the modification.
mutation updateFolder {

 updateFolder(

 repositoryIdentifier: "CLOS" identifier: "/usrxxx Client Onboarding/usrxxx GraphQL

Folder"

 folderProperties: {

 permissions: {

 replace: [

 { type:ACCESS_PERMISSION inheritableDepth:OBJECT_ONLY

 accessMask:999415 subAccessPermission:{

 accessType:ALLOW granteeName:"cn=usrxxx,dc=example,dc=com" }},

 { type:ACCESS_PERMISSION inheritableDepth:OBJECT_ONLY

 accessMask:999415 subAccessPermission:{

 accessType:ALLOW granteeName:"cn=cp4badmin,dc=example,dc=com" }},

 { type:ACCESS_PERMISSION inheritableDepth:OBJECT_ONLY

 accessMask:999415 subAccessPermission:{

 accessType:ALLOW granteeName:"cn=cp4badmins,dc=example,dc=com" }}

]

 }})

 {

 id pathName permissions {

 permissionSource inheritableDepth

 ... on AccessPermissionType { granteeName granteeType accessMask

 }

 }

 }

}

The output should be very similar to the one above, just without the group cp4bausers.

CP4BA Demos and Labs 2021 Page 17 of 21

_3. The folder can be deleted again by using the "deleteFolder" operation on the mutation, as follows (twice

replacing userxxx with your login):
mutation deletefolder {

 deleteFolder (

 repositoryIdentifier: "CLOS"

 identifier: "/usrxxx Client Onboarding/usrxxx GraphQL Folder"

) {

 id

 }

}

CP4BA Demos and Labs 2021 Page 18 of 21

4 Parameters

4.1 Introduction
Without being able to use parameters, an application wanting to use GraphQL to access FileNet Content

Platform Engine would require doing many string manipulations. Imagine performing the queries in the prior

chapters for example in a Java program. As values in the queries need to be mixed with GraphQL directives

and keywords, the application would need to assemble the final query in a rather complex manner.

Gladly, in FileNet Content Platform Engine version 5.5.6 support for parameters was introduced. This way,

the GraphQL queries can be developed and can be defined in a custom application as constant strings. Only

the parameters need to be supplied, and they are using JSON syntax.

The examples in this chapter will create the folder from the last chapter again, but this time the mutations

will be parameterized.

In the documentation, you find the description for the query parameters in this section:

https://www.ibm.com/docs/en/filenet-p8-platform/5.5.x?topic=mutations-v556-later-graphql-variables.

4.2 Exercise Instructions

_1. In the graphical user interface, the parameter values can be provided in the QUERY VARIABLES pane,

which by default is collapsed at the bottom of the screen:

Find the section and click on it to expand it and allow values to be provided.

_2. For the syntax of the parameter type definitions, it is recommended to review how the online

documentation is writing the type, and use the same notation. For a parameter holding the name of the

Object Store to work on, it would for example be denoted as "String!" similarly to following screenshot

from the online documentation:

https://www.ibm.com/docs/en/filenet-p8-platform/5.5.x?topic=mutations-v556-later-graphql-variables

CP4BA Demos and Labs 2021 Page 19 of 21

_3. The below example contains a parameterized general-purpose GraphQL mutation for creating a folder,

and asking about its security settings in the result data set. Copy it to the GraphiQL entry window (not the

parameters section), but don't try to execute it yet.
mutation createfolder($theRepo: String!, $parentFolderId: String!, $newFolderName: String!

) {

 createFolder (

 repositoryIdentifier: $theRepo

 classIdentifier: "Folder"

 folderProperties: {

 parent: { identifier: $parentFolderId }

 name: $newFolderName

 })

 {

 id pathName

 permissions {

 permissionSource

 inheritableDepth

 ... on AccessPermissionType {

 granteeName

 granteeType

 accessMask

 }

 }

 }

}

_4. In the unfolded QUERY VARIABLES pane, type the opening "{" character to define the json object with

the parameter values. A menu appears with the three parameter names. So, it is pretty straightforward to

provide the required data.

In the data below again substitute the usernames (twice), otherwise the parent folder ca not be found.
{"theRepo": "CLOS",

"parentFolderId": "/usrxxx Client Onboarding",

"newFolderName": "usrxxx GraphQL Folder"}

Execute the query to create the folder again.

_5. The next example shows that also more complex data structures, not only strings can be provided as

parameters. In this case a new permission set is passed as a parameter for a request to update the

folder security. In the online documentation the permissions to be provided are documented to be

having this type:

Consequently define the mutation as follows:
mutation updateFolder(

 $theRepo: String!,

 $folderId: String!,

 $permissions: [BasePermissionInput!]!) {

 updateFolder(

 repositoryIdentifier: $theRepo identifier: $folderId

 folderProperties: {

 permissions: {

 replace: $permissions

 }})

 {

 id pathName permissions {

 permissionSource inheritableDepth

 ... on AccessPermissionType { granteeName granteeType accessMask

 }

 }

 }

}

CP4BA Demos and Labs 2021 Page 20 of 21

_6. To provide the json parameter values, auto-completion is again of great assistance. Provide the

following, and replace usrxxx with your username again three times:
{

 "theRepo": "CLOS",

 "folderId": "/usrxxx Client Onboarding/usrxxx GraphQL Folder",

 "permissions": [{

 "type": "ACCESS_PERMISSION",

 "inheritableDepth": "OBJECT_ONLY",

 "accessMask": 999415,

 "subAccessPermission": {"accessType": "ALLOW", "granteeName":

"cn=usrxxx,dc=example,dc=com" }

 },{

 "type": "ACCESS_PERMISSION",

 "inheritableDepth": "OBJECT_ONLY",

 "accessMask": 999415,

 "subAccessPermission": {"accessType": "ALLOW", "granteeName":

"cn=cp4badmin,dc=example,dc=com" }

 }, {

 "type": "ACCESS_PERMISSION",

 "inheritableDepth": "OBJECT_ONLY",

 "accessMask": 999415,

 "subAccessPermission": {"accessType": "ALLOW", "granteeName":

"cn=cp4badmins,dc=example,dc=com" }

 }

]

}

_7. The parameterized version for the deletion of the GraphQL folder is again left open as an exercise to the

reader. If you are performing this exercise as part of a SWAT JAM event, you can post the completed

query on the slack channel for the event.

Congratulations you have successfully completed the lab “Interfacing FileNet Content Platform Engine with

GraphQL on Cloud Pak for Business Automation”!

CP4BA Demos and Labs 2021 Page 21 of 21

Appendix A. Solutions to the Questions

_1. A query for listing the name and value for the DomainType property as well, for the Domain Query would

just add the second value on the list of property names to extract the value of, e.g.
query domainquery {

 domain {

 id name

 properties(includes: ["SystemUserName", "DomainType"]) {

 id value

 }

 objectStores {

 objectStores {

 id symbolicName

 }

 }

 }

}

_2. The parameterized form for deleting a folder can be derived from the non-parameterized one given as an

example earlier. Here is the one without parameters first, with the values underlines which should be

parameterized:
mutation deletefolder {

 deleteFolder (

 repositoryIdentifier: "CLOS"

 identifier: "/usrxxx Client Onboarding/usrxxx GraphQL Folder"

) {

 id

 }

}

As both are strings, the parameterized version would consequently be:
mutation deletefolder($theRepo: String!, $folderID: String!) {

 deleteFolder(

 repositoryIdentifier: $theRepo

 identifier: $folderID) {

 id

 }

}

using the following QUERY VARIABLES (replace username twice):
{

 "theRepo": "CLOS",

 "folderID": "/usrxxx Client Onboarding/usrxxx GraphQL Folder"

}

